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1. The heat capacity of solids vs gases: The heat capacity of a material characterises how easily
it changes temperature due to being heated. In statistical mechanics you learned that there are two
commonly used heat capacities, one at constant pressure CP and one at constant volume CV . Mayer’s
relation, which gives the difference between the two heat capacities CP and CV , in terms of the
material’s volume V , temperature T and its mechanical properties

CP − CV =
TV α2

κT
(1)

namely the coefficient of thermal expansion α characterises the expansion of a material due to in-
creased temperature at fixed pressure, and the compressibility κT characterises how easily a material
is compressed by increasing the pressure at fixed temperature
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(a) In this question we will derive Mayer’s relation.

i. Starting from the first law of thermodynamics

dU = TdS − PdV, (3)

and the definitions of the heat capacities at constant volume and constant pressure
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(where here H = U + PV is the enthalpy1) show that CV and CP are given by
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ii. Use the total differential identity
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dy. (4)

with (x, y, z) = (T, V, S) to obtain a form for ∂S/∂T |P , and substitute this into the form for
CP − CV .

iii. Use the equality of mixed partial derivatives
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(5)

1The enthalpy differs from the internal energy U by the term PV , which accounts for the mechanical work required to
expand the system against the external pressure. As a result, H is the appropriate energy function for processes carried out at
constant pressure.
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ρ [kgm−3] α [K−1] κT [Pa−1] CP /M [J/(kgK)]
Al 2.699× 103 6.93× 10−5 1.32× 10−11 8.99× 102

Cu 8.960× 103 4.95× 10−5 7.14× 10−12 3.85× 102

Si 2.330× 103 7.80× 10−6 1.00× 10−11 7.13× 102

Table 1: Properties of solids at T = 300K. Sources: NIST WebBook.3

with (x, y, z) = (T, V, F ) (where F = U−TS is the free energy) to obtain the Maxwell relation
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(6)

and substitute this into the relation obtained in the previous part.

iv. Make use of (4) again with (x, y, z) = (T, P, V ) to obtain a form for ∂P/∂T |V , and substitute
this identity into your form for CP − CV .

v. Finally use the definitions of α and κT to hence obtain (1).

(b) It is instructive to compare the size of the difference CP −CV for different phases of matter. The
partition function of an ideal gas of N indistinguishable non-interacting particles in a volume V
is given by

Z = ZN
1 /N ! where Z1 =

1

(2πℏ)3

∫
V

d3x⃗

∫
R3

d3p⃗ e−βH1 (7)

where the single particle Hamiltonian is given by the kinetic energy H1 = p2/(2m), β ≡ (kBT )
−1,

where kB is the Boltzmann constant. Using the identity for Gaussian integration∫
R
dt e−t2 =

√
π (8)

evaluate the form for the free energy

F = −kBT logZ

(c) Using the relations

U = −T 2 ∂

∂T
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, and P = − ∂F
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obtain forms for CP , CV and hence Mayer’s relation for an ideal gas

CP − CV = NkB

(d) The ideal gas model is a quantitatively accurate model for inert monatomic gases, such as the
Noble gases. Using your answer from the previous question calculate the dimensionless ratio
(CP − CV )/CP for an ideal gas. Calculate (CP − CV )/CP for Helium at T = 300K2

CV /M = 3.116× 103 J/(kgK), CP /M = 5.193× 103 J/(kgK) (9)

and compare this with the ideal gas prediction.

(e) We compare the ideal gas result to data from solids. Using Table 1 and Mayer’s relation (1)
calculate (CP −CV )/CP for these materials. Compare and contrast your answer with the case of
Helium in part (c).

2Arp, V. D., McCarty, R. D., & Friend, D. G. (1998). Thermophysical properties of Helium-4 from 0.8 to 1500 K with
pressures to 2000 MPa (NIST Technical Note 1334, revised). National Institute of Standards and Technology.

3Al: https://webbook.nist.gov/cgi/inchi?ID=C7429905&Mask=2#Thermo-Condensed;
Cu: https://webbook.nist.gov/cgi/inchi?ID=C7440508&Mask=2#Thermo-Condensed;
Si: https://webbook.nist.gov/cgi/inchi?ID=C7440213&Mask=2#Thermo-Condensed
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(f) Recast Mayer’s relation as
CP − CV

CP
=

Tv2α2

CP /M
(10)

where v = (ρκT )
−1/2 is a velocity scale, and ρ = M/V is the density. Calculate v and α for both

an ideal gas (Helium at T = 300K, you will need the molar mass mHe = 4.0026 × 10−3kg/mol)
and the solids in Table 1, comment on which scale is causing the significant difference between
(CP −CV )/CP in these two cases, and the relative importance of distinguishing between CP and
CV for solids and gases.

(g) Based on the scale of the velocity v in part (1f), and its origin as a mechanical property of the
system (i.e. it is given by a combination of the density and compressibility), suggest what physical
property of material this velocity might correspond to.

2. The Boltzmann solid: The Boltzmann solid, (also known as the classical Einstein solid) consists of
a system of N particles in three dimensions with the harmonic oscillator Hamiltonian

H =

N∑
n=1

(
p2n
2m

+
1

2
K(xn − x0,n)

2

)
. (11)

where m is the mass of each particle, the spring constant K sets the strength of the confining potential,
and x0,n sets the equilibrium position of the nth particle.

(a) Evaluate the classical partition function (7) for the Boltzmann Hamiltonian (11) [Hint: as before
use the Gaussian integral (8)].

(b) Using the partition function, calculate the internal energy U . Give a statement of equipartition
theorem and show that U obeys this result. [Hint: follow the steps of the previous question: from
Z Calculate F , and from F calculate U .]

(c) Calculate the heat capacity C, and hence the molar heat capacity cmol = C/Nmol where Nmol is
the number of moles in the system

cmol = 3R

where R is the ideal gas constant. This is the Dulong-Petit law. [Hint: calculate CV from your
value of U in the previous result. In accordance with the results of the previous question you need
not distinguish between C, CP and CV for a solid.]

(d) Calculate σ2
x =

〈
x2
n

〉
− ⟨xn⟩2 and σ2

p =
〈
p2n

〉
− ⟨pn⟩2. Let’s consider whether using quantum

harmonic oscillators rather than classical harmonic oscillators will lead to different results. The
Heisenberg uncertainty relation states that for quantum harmonic oscillator

σxσp ≥ ℏ/2 (12)

Consequently, show that quantum effects must become quantitatively important for temperatures
T far below the Einstein temperature

TE ≡ ℏω/kB (13)

where ω =
√

K/m is the oscillator frequency.

3. The Einstein Solid: Einstein recognised that deviations from the Dulong-Petit law could be explained
by effects due to quantum mechanics. Specifically, by using quantum harmonic oscillators in place of
classical harmonic oscillators.

As a reminder, a one-dimensional quantum harmonic oscillator

Ĥ =
p̂2

2m
+

1

2
Kx̂2. (14)

is obtained from the classical oscillator by promoting x and p to operators with commutation relations
[x̂, p̂] ≡ x̂p̂− p̂x̂ = iℏ. The eigenvalues of this operator are found to be

En = ℏω(n+ 1
2 ) (15)

where ω =
√

K/m is the oscillator’s natural frequency.
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(a) Evaluate the partition function of a single one-dimensional quantum harmonic oscillator

Z ≡ tr[e−βH ] (16)

for the energy eigenvalues (15), and consequently find an expression for the heat capacity of the
single oscillator.

(b) Using your result, find the heat capacity C of a system of N quantum harmonic oscillators in
three dimensions (11), each with hamiltonian

Ĥ =

3∑
α=1

(
p̂2α
2m

+
1

2
Kx̂2

α

)
(17)

(c) Show that for T ≫ TE we recover the Dulong-Petit law.

(d) Sketch C/CDP as a function of T/TE (see Eq. (13)) where CDP is the Dulong-Petit value of the
heat capacity.

4. Debye Solid: Debye recognised that the flaw in Einstein’s calculation was quantising the motion of
individual decoupled atoms. His corrected treatment instead quantises the collective motion of the
coupled atoms, i.e. sound waves.

(a) Assuming a single branch of phonons with dispersion ω(k⃗) = v|⃗k|, derive the Debye heat capacity
of a two-dimensional solid as a function of temperature. This may be achieved by following
the approach followed in lectures, making changes where necessary to account for the different
dimensionality. You will need to leave your answer in terms of an integral that one cannot do
analytically.

(b) At high T , show the heat capacity goes to a constant and find that constant.

(c) At low T , show that C ∼ T ν and find ν.

(d) Show that in a d-dimensional harmonic crystal, the low-frequency density of states of normal
modes varies as g ∼ ωd−1. Deduce from this that the low-temperature specific heat of a harmonic
crystal vanishes as C ∼ T ν and find ν.

(e) Furthermore, consider the case where the normal mode frequencies did not vanish linearly with

|⃗k|, but as ω(k⃗) = c|⃗k|z. Derive the low temperature heat capacity exponent C ∼ T ν in this case
too.
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