
1 Anisotropic Media

For isotropic media how the displacement field D⃗ is related
to the electric field E⃗ and how the magnetic flux density B⃗ is
related to the magnetic field strength H⃗ is described by the
permittivity ε and the permeability µ.

E⃗ = ε(ω)E⃗, B⃗ = µ(ω) (1.1)

For anisotropic media these relationships are instead de-
scribed by tensors:

Di = εij(ω)Ej , Bi = µij(ω)Hj (1.2)

2 Plane Waves

Consider a plane wave in a media which is non-magnetic and
transparent.

Di = εijEj , B⃗ = H⃗ (2.1)

Since it is transparent, the components of the dielectric tensor
are all real. Let’s write down Maxwell’s equations:

∇× H⃗ =
1

c

∂D⃗

∂t
, ∇× E⃗ = −1

c

∂H⃗

∂t
(2.2)

Evaluating the time derivatives for D,H ∝ e−iωt,

∇× H⃗ = − iω

c
D⃗, ∇× E⃗ =

iω

c
H⃗ (2.3)

Evaluating the curls for E⃗, H⃗ ∝ eik⃗r⃗,

ik⃗ × H⃗ =
iω

c
D⃗, ik⃗ × E⃗ =

iω

c
H⃗ (2.4)

Of course the i cancels out from both sides,

k⃗ × H⃗ =
ω

c
D⃗, k⃗ × E⃗ =

ω

c
H⃗ (2.5)

We can already learn something about anisotropic media.
From these two relations: the vectors k⃗, H⃗, D⃗ are perpen-
dicular to each other and the three vectors k⃗, E⃗, H⃗ are per-
pendicular to each other. Remember H⃗ = B⃗ so we can draw
the following picture:

S⃗ =
c

4π
E⃗ × H⃗ (2.6)

3 Wave-vector Surface

Now we can define the vector n⃗:

n⃗ =
c

ω
k⃗ (3.1)

Plugging this back into 2.5,

H⃗ = n⃗× E⃗, D⃗ = −n⃗× H⃗ (3.2)

And the Poynting vector is

S⃗ =
c

4π
E⃗ × H⃗ =

c

4π
E⃗ × (n⃗× E⃗) (3.3)

S⃗ =
c

4π

(
E2n⃗− (E⃗ · n⃗)E⃗

)
(3.4)

Combing the two equations in 3.2,

D⃗ = −n⃗× (n⃗× E⃗) = n2E⃗ − (n⃗ · E⃗)n⃗ (3.5)

Applying 2.1 to the left hand side,

εE⃗ = n2E⃗ − (n⃗ · E⃗)n⃗ (3.6)

0⃗ = n2E⃗ − (n⃗ · E⃗)n⃗− εE⃗ (3.7)

0⃗ = (n2I − n⃗n⃗T − ε)E⃗ (3.8)

To find the compatibility condition we will rotate our coordi-
nate system to align with the right-handed orthonormal eigen-
basis of ε. Let x, y, z be the axes of this eigenbasis. In this ba-
sis the matrix ε is diagonal with diagonal elements εx, εy, εz.

0⃗ =

n2 − n2
x − εx nxny nxnz

nxny n2 − n2
y − εy nynz

nxnz nynz n2 − n2
z − εz

 E⃗ (3.9)

Since this expression must hold for all E⃗, the determinant is
zero. This produces the Fresnel equation:

n2(εxn
2
x + εyn

2
y + εzn

2
z)

−
[
n2
xεx(εy + εz) + n2

yεy(εx + εz) + n2
zεz(εx + εy)

]
+εxεyεz = 0

(3.10)

This equation can be solved for a particular frequency ω to
give the magnitude of the vector n⃗ as a function of it’s direc-
tion. This is a quadratic equation for n2 so in general there
are two different magnitudes n⃗ for a given direction. The
function between ω and k⃗.
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4 Ray surface

Another important vector to consider is the ray vector,

n⃗ · s⃗ = 1 (4.1)

Where the direction of s⃗ is determined by the group velocity
vector ∂ω/∂k⃗. This vector is significant because the phase of
light propagating from a point is

Φ =

∫
n⃗ · dℓ⃗ =

∫
(n⃗ · s⃗/s)dℓ =

∫
dℓ/s (4.2)

In homogeneous media (where n⃗ doesn’t depend on position)
the phase is simply

Φ = L/s (4.3)

So the surface produced by the ray vector is such that the
phase is the same at every point. This is the ray surface.
The ray surface and the wave-vector surface are related. If
the wave-vector surface is f(ω, k⃗) = 0, then the group velocity
vector is

∂ω

∂k⃗
= − ∂f/∂k⃗

∂f/∂ω
(4.4)

That is the group velocity is proportional to ∂f

∂k⃗
. But since

k⃗ ∝ n⃗, the group velocity is also proportional to ∂f
∂n⃗ which is

the normal of the surface. So the ray vector is normal to the
wave-vector surface. The reverse must also be true. So the
wave vector is normal to the ray surface.

We can also prove that the ray vector must be in the same
direction as the Poynting vector, as we would expect it to be.
Starting from equation 3.2, we differentiate

δD⃗ = δH⃗ × n⃗+ H⃗ × δn⃗ (4.5)

δH⃗ = n⃗× δE⃗ + δn⃗× E⃗ (4.6)

Dotting both sides by E⃗ and H⃗ respectively,

E⃗ · δD⃗ = H⃗ · δH⃗ + E⃗ × H⃗ · δn⃗ (4.7)

H⃗ · δH⃗ = D⃗ · δE⃗ + E⃗ × H⃗ · δn⃗ (4.8)

Plugging the second equation into the first:

E⃗ · δD⃗ = D⃗ · δE⃗ + 2E⃗ × H⃗ · δn⃗ (4.9)

Since 2.1 is a linear relation, D⃗ · δE⃗ = E⃗ · δD⃗.

E⃗ × H⃗ · δn⃗ = 0 (4.10)

Therefore, we get the expected result and the Poynting vector
is normal to the wave-vectors surface and hence normal to s.
Since the poynting vector is perpendicular to H⃗ and E⃗ the
same is true for s⃗,

s⃗ · H⃗ = 0, , s⃗ · E⃗ = 0 (4.11)

Recall equation 3.2,

s×H = s× (n× E⃗) = n⃗(s⃗ · E⃗)− E⃗(n⃗ · s⃗) = −E⃗ (4.12)

s×D = s× (−n× H⃗) = H⃗(n⃗ · s⃗)− n⃗(s⃗ · H⃗) = H⃗ (4.13)

H⃗ = s⃗× D⃗, s⃗ · E⃗ = 0 (4.14)

You may immediately recognize that this is very similar 3.2,
and we can used this fact to immediately write the analogous
expression:

E⃗ 7→ D⃗, n⃗ 7→ s⃗, ε 7→ ε−1 (4.15)

0⃗ = (s2I − s⃗s⃗T − ε−1)D⃗ (4.16)

Just as before the determinant must be 0,

s2(εyεzs
2
x + εxεzs

2
y + εxεys

2
z)

−
[
s2x(εy + εz) + s2y(εx + εz) + s2z(εx + εy)

]
+ 1 = 0

(4.17)

Just like the fresnel equation this equation results in two so-
lution for a given direction s.

5 Polarization

To find the polarization, consider when n⃗ is perpendicular to
E⃗, from equation 3.5 for Dα in the transverse direction,

Dα = n2Eα (5.1)

Substituting, Eα = ε−1
αβDβ we have(
1

n2
δαβ − ε−1

αβ

)
Dβ = 0 (5.2)

Just as before the determinant must be zero,

x2

εx
+

y2

εy
+

z2

εz
= 1 (5.3)

This describes the two axis of polarization in each direction,

A similar construction can be written for the electric field

εxx
2 + εyy

2 + εzz
2 = 1 (5.4)
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6 Uniaxial Crystals

The optical properties of crystals generally fall into three cate-
gories, cubic, uniaxial and biaxial. For a uniaxial crystal, two
of the eigenvalues of the permittivity are equal. In fresnels
equations we let εx = εy = ε⊥ and εz = ε∥,

(n2 − ε⊥)
[
ε∥n

2
z + ε⊥(n

2
x + n2

y)− ε⊥ε∥
]
= 0 (6.1)

This is simply a sphere and an ellipse:

n2 = ε⊥ (6.2)

n2
z

ε⊥
+

n2
x + n2

y

ε∥
= 1 (6.3)

Similarly for the ray surface:

s2 =
1

ε⊥
(6.4)

ε⊥s
2
z + ε∥(s

2
x + s2y) = 1 (6.5)

3


